Novel Feature Vector Set Extraction using Spectral Peaks in Autocorrelation Domain
نویسندگان
چکیده
This paper presents a new feature vector set for noisy speech recognition in autocorrelation domain. The autocorrelation domain is well known for its pole preserving and noise separation properties. In this paper we will use the autocorrelation domain as an appropriate candidate for robust feature extraction. In our approach, extraction of mel frequency cepstral coefficients (MFCC) of the speech signals are proposed based on novel Differentiated Relative Higher Order Autocorrelation Coefficient Sequence Spectrum (DRHOASS). In this approach, initially the lower lags of the noisy speech autocorrelation sequence are discarded and then, the effect of noise is further suppressed using a high pass filter in autocorrelation domain. Finally, the feature vector set of the speech signal is found using the spectral peaks of the filtered autocorrelation sequence. We tested our features on the Hindi isolated-word task and found that it led to noticeable improvements over other autocorrelation-based and differential spetral-based methods.
منابع مشابه
Robust feature extraction based on spectral peaks of group delay and autocorrelation function and phase domain analysis
This paper presents a new robust feature set for noisy speech recognition in phase domain along with spectral peaks obtained from group delay and autocorrelation functions. The group delay domain is appropriate for formant tracking and autocorrelation domain is well-known for its pole preserving and noise separation properties. In this paper, we report on appending spectral peaks obtained in ei...
متن کاملRole of Spectral Peaks in Autocoorelation Domain for Robust Speech Recognition
This paper presents a new front-end for robust speech recognition. This new front-end scenario focuses on the spectral features of the filtered speech signals in the autocorrelation domain. The autocorrelation domain is well known for its pole preserving and noise separation properties. In this paper, a novel method for robust speech extraction is proposed in the autocorrelation domain. The pro...
متن کاملRobust Feature Vector Set Using Higher Order Autocorrelation Coefficients
In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses...
متن کاملA Novel Feature Extraction Technique for Speaker Identification
This paper presents a novel feature extraction approach for speaker identification when the speech is corrupted by additive noise. The environmental mismatch between training and testing data degrades the performance of speaker identification system. The performance degradation is primarily due to presence of background noise when try to match a given speaker to the set of known speakers in a d...
متن کاملSpectrum Skeletonization: A New Method for Acoustic Signal Feature Extraction
Vibration Analysis Tests (VAT) and Acoustic Emission tests (AE) are used in several industrial applications. Many of them perform analysis in the frequency domain. Peaks in the power density spectrum hold relevant information about acoustic events. In this paper we propose a novel method for feature extraction of vibration samples by analyzing the shape of their auto power spectrum density func...
متن کامل